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Growth of disorder about point defects in a two-dimensional foam

A. Abd el Kader and J. C. Earnshaw*
Irish Centre for Colloid Science and Biomaterials,† The Department of Pure and Applied Physics,

The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
~Received 6 February 1998!

The evolution about isolated point defects of various kinds in two-dimensional liquid foam has been studied
experimentally. As the foam about the defect coarsens it becomes disordered, the degree of disorder growing
with time. This is broadly in line with recent simulations of defects in two-dimensional froths. The limitations
on this comparison with theory are discussed. In the case of multiple dislocations in the foam the evolution
leads ultimately to a decrease in disorder, which may be relevant to the changes found in the approach of
relatively ordered soap froths to a scaling state. Tests of various topological correlations for the disordered
foam about the defects suggest that it does not achieve statistical equilibrium during the experiments.
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I. INTRODUCTION

The temporal evolution of two-dimensional soap frot
has been the subject of much recent attention@1–3#. These
cellular structures are of interest as models for the thr
dimensional case, which is considerably harder to study b
experimentally and theoretically. Foam is a nonequilibriu
system which, in 2D, evolves under von Neumann’s la
This relates the rate of change of the area of a cell (A) to the
number of its neighbors (n, also referred to as its topologica
class!:

dA

dt
5k~n26!, ~1!

wherek is a system-dependent constant. Previous work@3,4#
has shown that relatively ordered soap froth exhibits an
tial transient in its evolution to a final scaling state, which
independent of the initial state of the foam; this transien
absent for initially disordered foam. In a recent theoreti
study, Levitan studied the growth of disorder due to a sin
defect in an otherwise ideal hexagonal froth@5#. His results
suggested that the long-time topological distribution fun
tion, while of stable form, differed from that for generic in
tial conditions~random 2D froth!. This excited some contro
versy@6,7#, and stimulated subsequent computer simulatio
which suggested that more conventional ideas are m
likely correct @8–11#. This debate creates interest in the e
perimental investigation of the evolution of a single defect
an otherwise ideal 2D foam.

Most experimental studies of the evolution of 2D frot
have involved bubbles confined between two closely spa
parallel glass plates@3,4#. However, it appears very difficul
to create perfectly ordered foam in such an apparatus, m
ing it difficult to carry out the studies of interest. Howeve
Forteset al. @12# have advocated bubble rafts on soap so
tions as model 2D foams. By restricting such a bubble
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within a hexagonal cell, the required sixfold coordination
ideal 2D foams can be achieved@13#. It is possible to create
various defects in the foam@13# to address the specific poin
at issue in the recent simulations: the behavior of an oth
wise ideal 2D system containing a single defect.

In a previous paper@14#, we reported such an experimen
tal study for perfect 2D foam containing one bubble lar
enough to have more than six nearest neighbors. This s
afforded qualitative support to the recent simulations@8#.
However, various types of defect are possible and must c
tribute to the temporal evolution of the relatively order
froths, including the initial transient@3#. It thus seems desir
able to study the growth of disorder about all possible typ
of defect. The only other study of which we are aware
volved, apart from the case of single large bubbles~with
conclusions broadly similar to those of@14#!, foams incorpo-
rating groups of larger or smaller bubbles@15#. While such
groups may well exist in relatively ordered froths, there m
also be point defects such as dislocations. Grain bounda
which will also be present, form a special case and we de
their consideration to a future paper.

The present paper concerns an experimental investiga
of the temporal evolution of ideally sixfold-coordinated 2
foams incorporating all possible types of point defect. T
focus is largely on the topological properties of the area
disorder around the defect, as the metrical properties beh
rather similarly to those for the isolated large bubbles pre
ously considered@14#. We also consider briefly how the
areas of disordered foam that develop about spatially se
rated defects interact with each other.

II. EXPERIMENTAL METHODS

The relevant simulations@5,8,9# all involve dry froth. As
noted above, we use an adaptation of Bragg’s bubble
@16# to permit formation of perfectly ordered 2D foam
These foams are, of course, wet, but we hope that their
havior may reflect at least some of the generic aspects o
evolution of 2D froth. Our methods have been fully d
scribed elsewhere@13#, and only an outline is needed here

Bubble rafts trapped between a soap solution and a g
cover plate endure essentially indefinitely as diffusion of

y
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PRE 58 761GROWTH OF DISORDER ABOUT POINT DEFECTS IN A . . .
gas from the bubbles to the atmosphere is inhibited@12#.
Temporal evolution is restricted to that due to coarsening
the bubbles, driven by differences in Laplace overpress
between bubbles of different radii. By forming such bubb
rafts within a hexagonal cell, we enforce ordering of the
foam @13#. The glass cover is supported on top of this ce
1–3 mm above the soap solution. The 2D foam is formed
bubbling N2 into the solution below the cell via a long hy
podermic needle. The bubbles are attracted to the cell
and to each other by comparatively long-ranged capill
forces @17#. It is possible, with practice, to create within
hexagonal cell 6 cm on a side, as used in the present wo
perfectly sixfold-coordinated lattice comprising'3000
bubbles about 2 mm in diameter. While there must be mi
variations in bubble diameter within a given lattice, these
not large enough to affect the regularity of packing to a
noticeable degree.

We follow the growth of disorder in the system induc
by introducing one or more defects into such 2D foam@14#.
The defect is introduced by interrupting the process when
foam is half made, forming the defect, and then complet
the regular foam around it. Different types of defect requ
different techniques for their creation@13#.

~i! A dislocation is created by part filling the cell with a
ideal lattice, then making two portions of lattice separated
a narrow channel but in register with the initial partial lattic
The channel fills in as the cell is subsequently filled w
bubbles, spontaneously forming the dislocation@13#.

~ii ! Impurity bubbles comprise isolated bubbles of diffe
ent size from those forming the foam. We define topologi
defects here as large impurity bubbles having more than
nearest neighbors~such other point defects as dislocatio
are of course topological defects, but we restrict our usag
the term to that just defined!. Impurity bubbles cross over to
topological defects when the bubble is about 40% large
diameter than the lattice bubbles@13#. All these defects are
formed by injecting an isolated bubble of different size
those forming the 2D foam, and then completing the latt
around it.

~iii ! Both vacancies and bound pairs of dislocations
created in two stages. The first stage is to create a 2D la
with a single dislocation. The second stage involves add
bubbles into one of the missing half layers of bubbles for
ing the dislocation. If one less bubble is added than the n
ber required to complete the extra half layer, a vacanc
introduced; if one more than this number, a bound pair
dislocations is created. A dislocation involves neighbor
fivefold- and sevenfold-coordinated bubbles. A bound pai
dislocations thus involves two fivefold- and two sevenfo
coordinated bubbles. This defect differs from the bound p
of dislocations that results from an elementaryT1 process@1#
in an ideally sixfold-coordinated foam. In the latter case
two sevenfold-coordinated cells must be adjacent. Using
methods it seems impossible to achieve this; rather it is
two bubbles with five neighbors that are initially adjacent

III. RESULTS AND DISCUSSION

In this study we present data from a series of experime
with a hexagonal cell of side 6 cm. These experiments
compass the evolution of the various point defects in an o
f
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erwise regular hexagonal foam. Before presenting our
sults, we consider some points that are generally relevan

Except for vacancies, which cannot occur in soap frot
we compare our data with the results of recent compu
simulations@2,5,9#. We defer detailed discussion of variou
limitations on these comparisons to Sec. IV. We follow Jia
et al. @8# and our previous paper@14# in studying the evolu-
tion of that set of bubbles around the initial point defe
having at least one nonhexagonal neighbor~called ‘‘the clus-
ter’’ !. However, foams containing an impurity bubble a
initially entirely sixfold coordinated, so we define the clust
in this case as the first shell of bubbles around the impu
plus the impurity bubble itself.

This definition of the cluster is somewhat arbitrary. How
ever, an alternative definition@9#, excluding the outer belt of
sixfold-coordinated bubbles, leads to distributions of top
logical classes,P(n), which are not unimodal, and for whic
the statistics of interest are subject to greater fluctuatio
The arbitrary nature of the cluster implies that the absol
values of these statistics may not be very significant;
therefore focus principally upon their temporal evolution.

As time progresses, the disorder increases due to coar
ing, the first observable changes occurring after 10–1
~Fig. 1!. At early stages, the disorder is localized round t
initial defect, propagating outwards with time. As pointe
out by Jianget al. @8#, three distinct topological regions ma
be identified at any instant around a defect: the ‘‘core’’ of t
defect~for example, the isolated large bubble in the case
the topological defect!, a ‘‘boundary’’ of cells having at leas
one neighbor that is not sixfold-coordinated, and the rema
der of the foam, unaffected by the defect. In simulation
cell within the latter region will remain ideally sixfold
coordinated until the disorder around the defect penetrate
it. In our experiments, however, inevitable tiny differences
the size of the ‘‘ordered’’ bubbles in the body of the foa
lead to coarsening, so that generalized disorder appears
time scales of the order of days. This limits the time ov
which we can follow the changes due to the defect, as ev
tually the growing cluster meets this generalized disord
All the data presented here relate to times before this
curred. At late times in some experiments the behavior

FIG. 1. Pictures of a typical evolving foam containing a disl
cation.~a! As formed (t50) and after~b! t510, ~c! t515, and~d!
t520 h.
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762 PRE 58A. ABD EL KADER AND J. C. EARNSHAW
parts from the trend evident at earlier times, perhaps du
the generalized disorder affecting the local packing aro
the cluster in such a way that the cluster can grow unusu
fast towards this different region of foam. This feature do
not seem to perturb any of the present data.

In the simulations time (t) could be used as an indepe
dent variable@8,9#. However, as we will see, experiment
factors can influence the time evolution of the foam. The s
of the cluster increases with time, both experimentally@14#
and in simulations@8#, and so it seems reasonable to use
number of bubbles in the cluster (nc) as the independen
variable, instead of time itself. We do not claim thatnc de-
pends linearly ont ~although in simulations this is found t
be the case for at least certain types of defect@8#!, just that it
provides a measure of the evolution of time in the system

Experimentally,nc grows with time, as does the numb
of bubbles adjoining the initial large bubble (nb) for foams
containing large bubbles. In that case the two quantities
related@14#, supporting the conclusion of the simulations@8#
that the outward propagation of the disorder in the foam
follows the growth of the impurity bubble. This reflects th
fact that the boundary is usually only some two bubbles w
~see Fig. 4 below!, as found in the simulations@8#. While nc

generally seems to be a smooth function ofnb , towards the
end of an experimentnc may increase relative to the gener
trend @14#. As noted above, this may occur as the clus
approaches the regions of generalized disorder, although
cannot presently confirm this.

The two basic topological transformations in foam (T1,
neighborhood switching, andT2, cell disappearance@1#! un-
derlie the temporal behavior described here. In particular,
certain types of defect unique patterns in the early stage
evolution can be understood in terms of distinct sequence
T1 processes. In such regimes the distribution of topolog
classes in the cluster is deterministic, and so its moments
exact.T2 processes tend to occur more reluctantly than in
soap froths, due to the very small surface area of
threefold-coordinated bubbles, which are tiny compared
those bubbles comprising the body of the foam.

We should note another complication of our wet foam
the plateau borders between the bubbles can lose their t
gular shape, multiple borders forming as threefold bord
merge@18#. Such multiple borders potentially lead to som
ambiguity concerning adjacency of bubbles, but in pract
this can always be resolved unambiguously.

A. General development and topological class distribution

1. Dislocations

For dislocations we distinguish between two types. F
one, the initial changes in the foam after 10–13 h invo
growth of disorder around the 5/7-coordinated pair
bubbles constituting the dislocation@Fig. 1~b!#. However, for
the other the first change~after a similar time! involves the
creation of one or two new dislocations elsewhere in
foam, followed by the growth of disorder around the origin
dislocation. In the latter case, we studied only the evolut
of disorder about the original defect; that about the new d
locations was generally similar. After the different initial b
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haviors the topological evolution for both cases was broa
the same. We show their data together for ease of comp
son.

The second type of behavior was usually observed w
the bubbles were less compactly packed than for the
case. This allowed the bubbles to relax with time, and a l
of bubbles ending close to a corner of the hexagonal
could slide relative to this corner~perhaps due to the stres
field of the dislocation! to form two extra half-layers of
bubbles.

Figure 2 shows the topological class distribution,P(n), of
the cluster about a dislocation, and its evolution.P(n) peaks
at n56; as the cluster agesP(6) falls andP(n) gets wider.
As sixfold-coordinated cells can be regarded as ‘‘ordere
P(6) is a measure of order whereas the width ofP(n) ~quan-
tified via its second central moment,m2) is a measure of
disorder. The decrease inP(6) and the widening ofP(n)
thus indicate that the cluster is becoming more disorde
with time.

TheseP(n)—which are broadly typical of those in all ou
experiments—are rather different from those reported
many 2D cellular networks, as illustrated by comparis
with P(n) for a Voronoi network based on 1000 points ra
domly distributed in a plane~Fig. 2!. In our foam, P(6)
remains comparatively high, while the populations
threefold-coordinated bubbles and at largern quickly be-
come relatively large. Such a population atn53 is unusual;
in conventional 2D froths such bubbles disappear throu
the T2 process@1#, leaving a rather smallP(3). In the
present foam the threefold-coordinated bubbles are sm
and they tend to lie around large bubbles. The differen
from 2D froths clearly lies in the wetness of our foams. T
area of contact available for diffusive interchange of N2 be-
tween the smallest bubbles and their neighbors falls m
rapidly ~area }r 2) for the present quasispherical bubbl
than in 2D froths~where a threefold-coordinated cell forms
triangular prism; area}r ), hindering the final stages of evo
lution leading to theT2 process.

Figure 3 shows the temporal evolution ofm2. This statis-
tic is initially 0.20, as the cluster comprises eight sixfol
coordinated bubbles and a single fivefold- and sevenfo
coordinated pair. It increases deterministically as the 5,7
changes to one fourfold- and two sevenfold-coordina

FIG. 2. Topological class distributionsP(n) for an evolving
foam containing a dislocation; values ofnc as in the legend. The
full line indicatesP(n) for a random cellular structure~see text!.
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PRE 58 763GROWTH OF DISORDER ABOUT POINT DEFECTS IN A . . .
bubbles~Fig. 1! and then increases less predictably to rea
a value'1.4 but eventually starts to decline. While the se
ond type of dislocation evolves faster than the first, the
havior ofm2 with nc is basically the same~similar values of
m2 are reached at largenc in both cases!.

2. Impurity bubbles

Figure 4 shows the typical evolution of an impuri
bubble. The second moment ofP(n) starts at zero, as ini
tially all bubbles in the cluster are sixfold-coordinated, a
increases withnc to quite large values, but may ultimate
decline@Fig. 5~a!#. The large values ofm2 are basically due
to the impurity bubble itself (n5nb) and so may not be
characteristic of the disorder induced in the foam by the
fect. Restricting ourselves to the boundary of the cluster~as
defined by Jianget al. @8#: the cluster minus the larg
bubble! yields more representative results@Fig. 5~b!#. The
second moment for this case (m28) increases to a lower valu
than that for the whole cluster, and again may later dec
somewhat.

FIG. 3. Variation ofm2, the second moment of the cluster wi
nc as different foams~different symbols! containing a dislocation
evolve.

FIG. 4. Pictures of a typical evolving foam that contains
initial isolated larger bubble, constituting an impurity defect for~a!
t50, ~b! 19, ~c! 32, and~d! 43 h.
h
-
-

-

e

Such impurity bubbles resemble, in part, the topologic
defects defined above. We have previously reported the e
lution of foams containing such topological defects havin
nb from 8 to 16@14#. These data were somewhat inconclu
sive in that, as just noted for impurity bubbles, the long-tim
behavior ofm28 might or might not have involved a slight
decrease. We have, therefore, investigated the behavior
topological defects for largenb ~19 or 20! to probe the long
time limit more conclusively. The second moment of th
cluster m2 increases withnc reaching rather large values
@Fig. 6~a!#, as found in the earlier experiments@14,15# and in
simulations @8#. However, it then clearly falls, forming a
peak. Similarlym28 grows to a value of about 2 before de
clining @Fig. 6~b!#.

The clearer peaks inm2 and m28 for foams containing
topological defects withnb519 or 20 are due to the higher
rate of gas diffusion between the large central bubble and
neighbors, reflected in von Neumann’s law@Eq. ~1!#. Some
of the neighboring bubbles become very small in a relative
short time, and thus have time to disappear before the cut
due to the generalized disorder. The slower evolution f
lower nb makes such decisive experiments more difficult.

These peaks inm2 andm28 do not appear in simulations,
where both statistics increase more or less steadily with tim
@8,9#. We relate the observed decline ofm2 and m28 to the
delay to late times of the disappearance of threefol
coordinated bubbles around the initial large bubble; it i
therefore, not surprising to find such discrepancies from t

FIG. 5. ~a! Variation of m2 with nc for foams containing an
impurity. ~b! Evolution of m28 , the second moment of the cluster
boundary. The initial values ofm2 andm28 are zero.
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764 PRE 58A. ABD EL KADER AND J. C. EARNSHAW
simulation results (T2 processes occur easier in froths and s
will be more randomly distributed in time!. This point is
significant, as it implies that the decreases inm2 andm28 that
we observe are not related to that in the transient found
Stavans and Glazier for relatively ordered foam@3#.

The above data relate to impurity bubbles larger th
those forming the foam. We have also studied impuri
bubbles smaller than those comprising the lattice. In th
case, while the impurity bubble shrinks rather than growin
m2 follows a trend much as for larger bubbles. However,
does not reach as high a value as in that case@Fig. 5~a!#, as
seems reasonable given that those high values are due to
largenb . However, over the limited range ofnc the data are
consistent with those for larger impurities.

3. Pair of dislocations

Turning to the bound pair of dislocations, the early deve
opment of the cluster~Fig. 7! follows a clear deterministic
sequence ofT1 processes. The initial cluster has tw
fivefold-, two sevenfold-, and twelve sixfold-coordinate
bubbles. The first change involves the fivefold-coordinat
bubbles becoming fourfold-coordinated and the sevenfo
coordinated bubbles becoming eightfold-coordinated. This
followed by two simultaneousT1 processes, the fourfold-
and eightfold-coordinated bubbles becoming, respective
threefold- and ninefold-coordinated, while two pairs o
fivefold- and sevenfold-coordinated cells appear. Thereaft
the evolution of the system is no longer deterministic.

The second momentm2 grows monotonically from 0.286
~Fig. 8!. The initial increase occurs without change innc .

FIG. 6. As Fig. 5, for large topological defects.
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Ultimately m2 appears to increase roughly linearly withnc .
This broadly agrees with the results of simulations of t
evolution of foam containing a single defect formed by
elementaryT1 process@9#. The difference in the initial state
between our experiment and that of the simulations~experi-
mentally fivefold-coordinated cells are adjacent, afterT1 the
sevenfold-coordinated cells are! appears not to affect the de
velopment ofm2.

4. Vacancy

For the vacancy~Fig. 9!, the initial cluster has 18 bubble
~six fivefold-coordinated surrounding the actual vacancy, a
twelve sixfold-coordinated:m250.22!. The vacancy first col-
lapses as the bubbles around it grow, leading to one of
different topological arrangements in the cluster~three
fivefold-, three sevenfold-, and twelve sixfold-coordinated
two fivefold-, two sevenfold-, and twelve sixfold
coordinated!. In the first case,P(6) stays the same whilem2
increases to 0.33, while for the other,P(6) increases becaus
nc falls and m2 increases to only 0.25.@This indicates the
approximate nature ofP(6) andm2 as measures of order an
disorder. While these two statistics are usually inversely c

FIG. 7. Pictures of a foam containing a bound pair of disloc
tions. ~a! The initial state (t50) and after~b! t520, ~c! t527, and
~d! t535 h.

FIG. 8. The variation ofm2 with nc for bound pairs of disloca-
tions.
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PRE 58 765GROWTH OF DISORDER ABOUT POINT DEFECTS IN A . . .
related, special cases may show the opposite tendency.# Sub-
sequentlym2 grows monotonically withnc to quite high val-
ues for both cases~Fig. 10!.

One set of data in Fig. 10 represents an experimen
which the surface of the solution was in contact with t
glass covering the hexagonal cell, rather than leaving a
removing the capillary attraction between the bubbles@13#.
This delayed the evolution of the foam by about 12 h, af
which time the data paralleled those for other foams cont
ing a vacancy. However, all the data collapse on a comm
variation when plotted againstnc . It is such experimenta
effects that lead us to usenc as a measure of time.

B. Topological correlations

For cellular structures it is known that adjoining cells a
correlated: few-sided cells have many-sided neighbors
vice versa@1#. We therefore now turn to various topologic
correlations in the clusters.

According to the Aboav-Weaire law@19,20#, a widely
obeyed semiempirical formula, for finite networks the me
number of sides of cells adjoining ann-sided cell is@21#

FIG. 9. A typical evolving foam with a vacancy at~a! t50, ~b!
t516, ~c! t523, and~d! t533 h.

FIG. 10. Variation ofm2 with nc for foams with a vacancy~see
text for discussion!.
in

p,

r
-
n

d

n

m~n!5^n&2a1
^nm~n!&2^n&21^n&a

n
. ~2!

This law embodies two relations, the semiempirical Aboa
law @19#

m~n!5A1
B

n
, ~3!

and Weaire’s rigorous sum rule@22#

^nm~n!&5^n&21m2 . ~4!

For infinite networks Euler’s rule implieŝn&56 and the
Aboav-Weaire law reduces to the form usually quoted:

m~n!562a1
6a1m2

n
. ~5!

Aboav’s law can be derived from arguments based on m
mum entropy@23#, and hence may represent an express
that a cellular structure obeying it is in statistical equili
rium. While the parametera is generally found to be'1,
these arguments do not predict its value. We note, howe
that the Aboav-Weaire law involvesa in both the intercept
and gradient of the linear dependence ofm(n) uponn @19#,
permitting a check upon consistency of the data.

For a finite network ofN cells Euler’s rule becomes@24#

^n&<62
12

N
. ~6!

All our data for the evolved clusters obey this relation, usi
nc for N ~certain initial states do not obey Euler’s rule!. The
data also all agree with Weaire’s sum rule to within 1%.

Now m(n) does not vary much withn, so that the com-
mon practice of plottingnm(n) versusn can conceal devia-
tions from the law@Weaire ~private communication!#. It is
preferable to test the form of the law by plottingm(n) versus
n21. This is done in Fig. 11 for the various point defects. F
clarity only one state of foam for each type of point defect
shown, usually that at largestnc ~time! as the cluster mus
then have evolved some way towards equilibrium. While
dividual cases are probably not statistically significant,
same trends were always observed for the different type
defect, suggesting that the variations shown are indeed
resentative.

Dislocations and vacancies yield linear relationsh
@Figs. 11~a! and 11~b!#. In both cases values ofa derived
from the slope and intercept of a linear fit are mutually co
sistent ~Table I!, enabling us to claim agreement with th
Aboav-Weaire law. The values ofa are, however, different
in the two cases. This, and the differences from unity of
estimates ofa for the vacancy, is not surprising, as only fo
foams dominated byT2 processes or cell division~impos-
sible here! shoulda51 @Rivier ~private communication!#.

However, the bound pair of dislocations and impur
bubbles~both large and small, and including topological d
fects! consistently gives nonlinear plots@Figs. 11~c! and
11~d!#. We initially associated these departures from line
ity with the tiny threefold-coordinated bubbles. Howeve
even when we ignore the presence of such bubbles, the p
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FIG. 11. Then dependence of the average number of sides of cells neighboring ann-sided cell in clusters about single defects:~a!
dislocation,~b! vacancy,~c! bound pair of dislocations, and~d! impurity.
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retain the same general form. In both cases there are l
bubbles (n>7) in contact with each other: the correlatio
are not as described by the Aboav-Weaire law. This posi
association of large bubbles with each other causesm(n
>7) to be larger than expected from the trend for lowern.
For dislocations and vacancies the evolution evidently d
not lead to such associations.

The disagreements with the Aboav-Weaire law, which
find in some cases, are not really surprising—our foa
evolve over relatively short periods of time from speci
initial conditions, and so might well not be expected to be
statistical equilibrium. The high values ofP(6) typical of
our data indicate that the clusters are rather ordered s
tures, even in their final stages. Indeed, from this point
view the linear Aboav-Weaire plots found for dislocatio
and vacancies are rather surprising. Now linear Abo
Weaire plots need not imply equilibrium@21#; unfortunately
the statistics of our clusters are not adequate to test the m
mum entropy origin of those linear Aboav-Weaire laws th
we do find. Departures from linearity are expected for po
disperse distributions of cells@25# and the great difference
in size between bubbles withn53 or @6 may underlie some
of the deviations seen in Figs. 11~c! and 11~d!.
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As the clusters which evolve about defects are still rat
ordered structures, we investigated a sample area~of 260
bubbles! randomly chosen from the whole foam at a la
time, when it appeared generally very disordered. For
sampleP(n) is much more consistent with literature data f
soap froths@3# and the Aboav-Weaire law is smooth an
linear ~Fig. 12!. The values ofa are again mutually consis
tent ~Table I!.

In earlier studies of topological correlations of random 2
cellular structures it has been found thatm2 varies withP(6)
in an apparently universal manner@21,26#. According to Le-
maı̂tre et al. @26# this relation is the equivalent, for such ran
dom structures, of the virial equation of state in statisti
mechanics@27#. Remarkably the virial coefficients do no
vary from case to case: data for a very wide range of
mosaics collapse onto a universal curve, implying that
various P(n) examined belong to a specific universali
class@26#. The universal curve can be parametrized as@21#

m2P~6!250.15060.014, ~7!

the so-called Lemaıˆtre law.
TABLE I. Computation of values ofa from the intercept (ac) and slope (am) for the linear Aboav-
Weaire plots of Figs. 11 and 12.

Defect type slope intercept m2 ^n& am ac

dislocation 7.9560.39 4.6960.08 1.1660.41 5.8660.26 1.1660.11 1.1760.28
vacancy 10.5060.49 4.4860.11 1.1660.29 5.9860.19 1.5660.11 1.5060.22
disordered 6.6960.13 5.3060.02 2.9260.10 5.9860.04 0.6360.06 0.6960.05
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Figure 13 shows the relationship betweenm2 and P(6)
for all types of defects that we have studied: the data repr
sent the evolution of a single cluster for each type of defec
While these data appear to collapse reasonably well onto
common trend ~within rather large uncertainties!, the
value ofm2 for a givenP(6) is much larger than given by
Lemaı̂tre’s law. The difference is not surprising as the
threefold-coordinated bubbles make our values ofm2 high,
while P(6) retains a high value. As noted above, the cluster
are really rather well ordered, even in the final stages. It

FIG. 12. ~a! The topological class distribution and~b! the
Aboav-Weaire plot for a sample of very disordered foam.

FIG. 13. Plot ofm2 againstP(6) for the various point defects.
e-
t.
a

s
is

rather remarkable that states of our system arising from
ferent initial conditions collapse tolerably well onto a com
mon form: the initial state has rather little impact. Indee
measurements of the areas of generalized disorder, w
evolve in the initially ordered region of foam, yield values
m2 andP(6) that accord well with the trends shown in Fi
13.

As noted above, the large values ofm2 in the present
study arise from threefold-coordinated bubbles, which h
persist rather than disappearing throughT2 processes ran
domly occurring in time. Our foams are, in this sense, alwa
comparatively young. For the sample of 260 bubbles in
final stages of evolution of the foam, when it appears gen
ally very disordered,P(n) ~Fig. 12! is very different from
those found for the clusters about the defects~Fig. 2!. These
data yieldP(6)50.2360.03 andm252.9260.10, in excel-
lent accord with Lemaıˆtre’s law @21#.

As a virial equation, the Lemaıˆtre law can only be valid
for foam in equilibrium. It is thus not entirely surprising tha
our clusters do not obey it. This further reinforces the su
gestion that the linear Aboav-Weaire plots found for t
cases of the dislocation and vacancy may not be indicator
maximum entropy states.

C. Metrical properties

Various measures of area are broadly in accord with
pectation, and with previous results for topological defe
@14#, and need not be reported in detail. The area of
cluster for all types of point defects and, in the case of
impurity bubbles, the area of the cluster boundary and of
large central bubble increase linearly with the number
bubbles in the cluster (nc), as might be expected. As fo
topological defects@14#, the average area per bubble in th
boundary of the cluster about an impurity bubble, when n
malized by the area in an ordered region of the foam at
same age, fluctuates about a constant value'0.960.1.

Simple arguments suggest that the number of sixfo
coordinated cells in the periphery of the cluster should sc
aspAnc ~to within a numerical factor of order unity!. To a
good approximation we can take this number to be the t
number of sixfold-coordinated cells in the cluster,n6. For all
types of defect studied,n6 does grow smoothly withnc ~Fig.
14!. However, the variation found does not accord with t
expected dependence: at lownc the continuum treatment in
herent in the arguments used must break down, there b
little area to accommodate internal bubbles, while large cl
ters tend to develop irregular outlines, increasing the num
of bubbles in the 6-belt~there will also be an increased prob
ability of sixfold-coordinated cells internal to the cluster!.

D. Multiple dislocations

The results presented above for isolated point defects g
erally support the conclusions of recent simulations@8,9#. In
particularm2 increases systematically as the disorder gro
around the initial defect; the decreases at large times
served for certain types of defect are caused, we believe
the nongeneric behavior of threefold-coordinated bubb
and cannot be associated with the decrease inm2 from a
transient high value observed in the evolution of initia
relatively ordered soap froths@3#. To further our understand
ing of this phenomenon in froths we briefly consider t
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evolution of disorder about spatially separated defects in
otherwise sixfold-coordinated foam.

The technique used for creating vacancies and bo
pairs of dislocations can be adapted to produce multiple
locations in the foam. Typically we produce two dislocatio
separated more or less widely along one of the extra h
lines of bubbles~Fig. 15!. Bound pairs of dislocations ar
formed by filling in one of the missing half-lines. Howeve
if the number of bubbles added ism more or less than the
number required to complete the extra half layer, a pair
dislocations separated bym bubbles is created. If we addm
more bubbles, the two dislocations are joined by a comm
extra half-line of bubbles~‘‘internal half-line’’ !; if m fewer,
there is a common missing half-line~‘‘external half-lines’’!.
As a further complication, in the former case the bubb
forming the cluster may be compactly or noncompac
packed. In all these cases the Burgers vector is always z
as the extra half-lines cancel each other. We define the c
ter here as the set of bubbles around the pair of dislocat
having at least one nonhexagonal neighbor, plus the be
sixfold-coordinated bubbles~two bubbles wide! separating
the pair of dislocations.

FIG. 14. The variation ofn6, the number of six-coordinated
bubbles in the cluster withnc for different point defects~open sym-
bols! and multiple dislocations~full symbols; see below!. The line
representspAnc ~see text for discussion!.

FIG. 15. Pictures of a 2D foam with multiple dislocations.~a!
The foam as formed, and for~b! t511, ~c! t523, and~d! t535 h.
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Figure 16~a! shows the variation ofm2 with nc for two
dislocations separated bym bubbles~noncompact interna
half-line and external half-lines!. m2 is relatively low com-
pared to that for the bound pair of dislocations~Fig. 8! due to
the inclusion of the belt between the dislocations. It reac
higher values for external half-lines compared to inter
half-lines. In the former case the regions of disorder arou
the separate dislocations merge with each other quite e
so that the cluster has time to become very disordered be
the experimental cutoff. For internal half-lines the belt
sixfold-coordinated bubbles persists longer. However,
data for both cases show excellent general accord. In
figure two points fall well below the trend; we will discus
these data, which represent the late stages of two diffe
experiments, below.

For compact internal half-lines the compactness of
packing in the cluster leads to thinner liquid walls, allowin
faster diffusion of gas between the bubbles than the prev
case, so that the bubbles in the cluster evolve more rap
m2 reaches higher values than for the previous cases be
eventually decreasing@Fig. 16~b!#.

By perturbing a compact cluster having an internal ha
line the number of dislocations can be increased to three
four. However, the behavior ofm2 remains much as for the
original two dislocations. One set of data in Fig. 16~b! rep-
resents an experiment in which such a rearrangemen
bubbles was induced, creating four dislocations.m2 reaches a

FIG. 16. The variation ofm2 with nc for multiple dislocations
with m54, having ~a! noncompact internal half-line~open sym-
bols! and external half-lines~full symbols!; ~b! compact internal
half-line form52 –4~open symbols! and for one example with four
dislocations andm54 ~full symbols!.
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rather higher value than for two dislocations but then
clines. The large values ofm2 are only partially due to the
presence of threefold-coordinated bubbles, but also re
significant disorder in the cluster.

In all of these cases a decline inm2 occurs. This takes
place long after the point at which two ‘‘clusters’’ around th
individual dislocations merge, which typically happens asm2
increases to'1.2. This merging is followed by a significan
growth ofm2 as the cluster becomes very disordered, bef
this statistic eventually decreases. Unlike the case of isol
defects the major reason for this decline inm2 at long times
is not the disappearance of threefold-coordinated bubble
some experiments their number actually increas
Threefold-coordinated bubbles do vanish, but their numbe
replenished from the populations atn54 and 5. The de-
crease inm2 appears to arise from localT1 rearrangements
due to coarsening of the foam. The wings ofP(n) decrease,
while the central narrow peak, for 5<n<8, broadens~Fig.
17!: the foam is evolving towards a more generally dis
dered state.

These observations appear to run counter to a rece
suggested explanation@15# of the decrease inm2 during the
initial transient in foam, which starts out relatively order
@3#. This involves growth of clusters about point defects ra
domly distributed in the foam: it is suggested that as
clusters grow into each other they will form a rando
Voronoi network, havingm2 appropriate to such a syste
(m251.82). However, this random network will compris
clusters, not cells, and it is not clear what relation this va
of m2 would bear to that for the foam. The present da
suggest that the decrease inm2 found after the initial tran-
sient for rather ordered foam may be a natural conseque
of the evolution about spatially separated point defects.

IV. CONCLUSIONS

We have investigated the evolution of disorder arou
single point defects in otherwise ideally sixfold-coordinat
bubble rafts, used as model 2D foams. For all types of de
we find that the second moment of the topological class

FIG. 17. Topological class distributions for an example of foa
containing multiple dislocations@h in Fig. 16~b!#: at maximum of
m2 (s) and at final state (d).
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tribution, m2, increases with time; the decreases observe
late times in some instances are, we believe, nongen
arising from the nature of the model foam used. This conc
sion lends some support to certain recent computer sim
tions@8,9#. However, in the presence of multiple dislocatio
in the foam the time variation ofm2 shows a definite peak
which appears to be a real consequence of coarsening in
foam. This observation may be relevant to understanding
transient that has been observed in initially ordered 2D s
froths as they evolve towards a scaling state@3#.

It is appropriate to recapitulate upon differences betwe
our experimental system and the computer simulations@8,9#
and 2D soap froths@3,4# with which comparisons have bee
drawn.

~i! The wetness of the foam has been noted at sev
points. The liquid component leads to specific differenc
from dry froths, particularly the presence of a significa
rather long-lived population of small threefold-coordinat
bubbles. While this leads to a largerm2 than for froths, the
increases seen may be generic.

~ii ! The data extend over relatively short times, due
generalized disorder arising from imperfections of the init
state. Certainly, as shown by our considerations of the to
logical correlations, our data do not extend to statistical eq
librium, as in the long time limit explored in computer simu
lations @5,8#.

~iii ! Largely following from the previous point, ou
samples of bubbles within the clusters are small, leading
large uncertainties on the data.

These considerations suggest that, as implied earlier, c
parisons with dry froths should be treated with some cauti

We have further investigated topological correlations
these systems. Topological correlations found for random
foam, such as the Aboav-Weaire law@19,20# and the Lemaıˆ-
tre law @21,26#, can be derived from maximum entropy a
guments, indicating that they relate to systems in statist
equilibrium. Perhaps surprisingly, in some, though not
cases the area of disordered foam evolving about a p
defect yields a linear Aboav-Weaire plot. Unfortunately t
statistics of our system are not adequate to check the gen
origin of such topological correlations. For all types of d
fects the plot ofm2 versusP(6), theprobability of sixfold-
coordinated bubbles, shows a reasonable collapse to a un
variation, which is, however, very different from that e
pressed via Lemaıˆtre’s law. In particular, for a givenP(6),
the values ofm2 found here are significantly larger than e
pected from that law. This is a further consequence of
nature of the model foam used. However, the collapse d
indicate that the behavior observed for different defects ha
certain generality.
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